Modeling and Forecasting A Groundwater Dominated Ecosystem

David R. Steward, Ph.D., P.G., Professor
Kansas State University
Department of Civil Engineering
Some Papers

Questions

How does precipitation impact stream baseflow in a native prairie ecosystem?

How do plants interact with groundwater?

How does the sloping base of the Ogallala Aquifer control groundwater flow?

How do natural and anthropogenic processes interact?
Modeling Framework

Processes and Properties

Framework

Problems
- Groundwater/Surface Water
- Phreatophytes
- Sloping Base
- Society

Conclusions

Yang, Steward, de Lange, Chubb, Bernard (2010)

Data
- Pumping wells
- Water level Obs.
- Soils
- Surface elevation
- Boreholes
- Rainfall
- Geology

Conceptualization
- Number of aquifer layers?
- Confined/unconfined?
- Heterogeneities?
- Aquifer properties?
- Boundary conditions?

Modeling
- Finite difference method
- Finite element method
- Analytical element method

2012 Water Seminar: Steward KSU
Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

(a) Perennial streams in the lowland prairie, with the Kansas River valley in the far distance to the left.

(b) Ephemeral streams in the upland prairie.

(c) Conceptual model and variables.

Steward, Yang, Lauwo, Staggenborg, Macpherson, Welch (2011)
Soils of the northern Flint Hills

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions
Surface water fluxes
Partitioning precipitation

Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions

Fig. 4. Mean estimates for evapotranspiration, runoff, and recharge plus and minus one standard deviation for the soils of the study region.

Steward, Yang, Lauwo, Staggenborg, Macpherson, Welch (2011)
Groundwater recharge

Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions

Fig. 5. Spatial distribution of recharge in the study region and at Konza LTER.

Steward, Yang, Lauwo, Staggenborg, Macpherson, Welch (2011)
Groundwater models

Different model; same results

Framework

Problems

- Groundwater/Surface Water
- Phreatophytes
- Sloping Base
- Society

Conclusions
Fig. 8. Depth to water in the study region and at Konza LTER

Steward, Yang, Lauwo, Staggenborg, Macpherson, Welch (2011)
Cottonwoods near diversion

Framework
Problems
 Groundwater/ Surface Water
 Phreatophytes
 Sloping Base
Society
Conclusions
Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions

Cheyenne Bottoms
Salt cedars in river corridors

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Yang and Steward (2012)
a. Groundwater and a phreatophyte

b. Groundwater root uptake functions

Figure 1. Variables used to delineate groundwater flow associated with a phreatophyte, and three functional approximations for the specific discharge of groundwater uptake by a phreatophyte presented in dimensionless form.

Steward and Ahring (2009)
Isolated plant

Head and fluxes beneath a tree

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Isolated plant

Head and fluxes beneath a tree

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Isolated plant

Head and fluxes beneath a tree

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Isolated plant

Head and fluxes beneath a tree

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions
Local model of a tree

Capture zone of a phreatophyte

Framework
Problems
 Groundwater/Surface Water
 Phreatophytes
 Sloping Base
Society
Conclusions

Steward and Ahring (2009)
Plant to regional scales

Fields of phreatophytes

Framework
Problems
Groundwater/
Surface Water
Phreatophytes
Sloping Base
Society
Conclusions

1. Aerial photograph

Steward and Ahring (2009)
A regional model of phreatophytes and fields

Capture zones

Framework

Problems

Groundwater/
Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Steward and Ahring (2009)
Gently sloping aquifer

Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions
Groundwater Depletion

Estimated Usable Lifetime

Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions

Source: USGS (water.usgs.gov)
Source: KGS (www.kgs.ukans.edu)
Figure 1. Groundwater parameters for a sloping base: (a) sloping base; (b) stepping base approximation.

Steward (2007)
Predevelopment groundwater elevation [m above m.s.l.] and predevelopment saturated thickness [m] in three regions.

Wells and observed changes in saturated thickness ∆H [m] from predevelopment to 2005

Steward, Yang, Chacon (2009)
Ogallala Aquifer

Water Use

Framework

Problems
- Groundwater/Surface Water
- Phreatophytes
- Sloping Base

Society

Conclusions

12 April 2012

Steward, Yang, Chacon (2009)
Ogallala Aquifer

Groundwater Declines: Existing and Projected

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Modeled and observed change in saturated thickness over the time of historical water-use records (1988–2005)

a. Sheridan County, KS

b. Scott County, KS

c. Seward County, KS

Forecasted change in saturated thickness occurring 20 years after historical water-use records (2025)

d. Sheridan County, KS

e. Scott County, KS

f. Seward County, KS

Forecasted change in saturated thickness occurring 50 years after historical water-use records (2055)

g. Sheridan County, KS

h. Scott County, KS

i. Seward County, KS

Steward, Yang, Chacon (2009)
Irrigated agriculture

Framework
Problems
 Groundwater/ Surface Water
 Phreatophytes
 Sloping Base
 Society
Conclusions
Important Data

Groundwater, Crop, Climate

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Steward, Peterson, Yang, Bulatewicz, Herrera, Mao, Henderson (2009)
Well-parcel relationship

Framework

Problems

Groundwater/Surface Water

Phreatophytes

Sloping Base

Society

Conclusions

Steward, Petersin, Yang, Bulatewicz, Herrera, Mao, Henderson (2009)
Economics

Linked models

Water availability

Agri-Economic Model

Land-use

Economic Parameters

- Market prices
- Policy (incentives/regulations)
- Parcel properties

Steward, Peterson, Yang, Bulatewicz, Herrera, Mao, Henderson (2009)

Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions
Crop choice

Agro-Ecologic Model

Agriculture Parameters
- Crops
- Management choices
- Soils
- Weather

Linked models

Agriculture

Framework
Problems
- Groundwater/Surface Water
- Phreatophytes
- Sloping Base
Society
Conclusions

Bulatewicz, Jin, Staggenborg, Lauwo, Miller, Das, Andresen, Peterson, Steward and Welch (2009)
Linked models

Framework
- Problems
 - Groundwater/Surface Water
 - Phreatophytes
 - Sloping Base
 - Society
- Conclusions

Water-use

Groundwater Model

Water stores

Hydrogeologic Parameters
- Aquifer properties
- Water properties

Yang, Steward, de Lange, Lauwo, Chubb, Bernard (2010)
OpenMI linkages

Framework
Problems
Groundwater/Surface Water
Phreatophytes
Sloping Base
Society
Conclusions

11 April 2012

2012 Water Seminar: Steward KSU
Integrated model forecasts

Framework

Problems
- Groundwater/Surface Water
- Phreatophytes
- Sloping Base
- Society

Conclusions

Bulatewicz, Yang, Peterson, Staggenborg, Steward, Welch (2010)
Integrated model forecasts

Framework

Problems
- Groundwater/Surface Water
- Phreatophytes
- Sloping Base
- Society

Conclusions

b) Regulation policy

- Total Water Use (x10^3 m^3)
- Water Level Change (m)
 - High: 1.0
 - Low: -0.3

- Total Revenue ($ x 10^3)

- Most Frequent Crop Choice

c) Incentive policy

- Total Water Use (x10^3 m^3)
- Water Level Change (m)
 - High: 1.0
 - Low: -0.3

- Total Revenue ($ x 10^3)

- Most Frequent Crop Choice

Bulatewicz, Yang, Peterson, Staggenborg, Steward, Welch (2010)
Conclusions

Range of groundwater problems

Data → Conceptualization → Model

Knowledge to support informed decision making